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Abstract

Grain boundary (GB) energies have an effect on the frequency with which
certain GBs are present in a material. Since GBs have a direct impact on a
material’s properties, knowledge of GB energies is useful in determining those
properties. This knowledge is difficult to establish due to an incomplete under-
standing of the atomic structure of a GB. Previous research has successfully
created an interpolation function for the GB energies of face-centered cubic
(fce) metals. An extension of this work was recently done by creating an
interpolation function for uranium dioxide (UO;), which has a fluorite crys-
tal structure. This work improves the accuracy of that function. Molecular
dynamics (MD) simulations were used to calculate more accurate GB ener-
gies for UO,, and new fitting parameters were calculated from those results.
Comparison with previous work shows an overall improvement.



INTRODUCTION

The effect of GBs is very important in the simulation of materials. Knowledge of the
energy at any arbitrary GB allows for more realistic simulations of the microstructure of
the material. This allows for accurate calculations of material properties. A challenge in
the effort to calculate this information is that GBs and their associated energies are difficult
to analytically define. Part of this difficulty stems from the lack of available data for a
sufficient number of GBs to get an accurate picture of the GB energy profile. GBs have
five degrees of freedom.'® Thus, the full GB five-space can only be accurately interpolated
within through the use of many data points.! In 2014 Bulatov et al.' created a function
that accurately interpolates the GB energies of four fcc metals — nickel, aluminum, gold,
and copper — with a limited amount of data by taking advantage of the topography of the
GB energy hypersurface. With that work they were able to create a “universal” function
that describes the GB energies of all fcc metals and depends on only two material-specific
parameters. Harbison® implemented the same procedure for UO,, using energies calculated
from MD simulations with no anneal. This work uses energies for the same GBs used in
Harbison’s work, but calculated with an anneal of 800 K.

METHODS

Literature review

An in-depth study of Bulatov et al.’s! work was conducted to understand their methods
for calculating the GB energy parameters. In order to find the energy of an arbitrary GB
in the five-space they implemented a hierarchical interpolation method. They started by
choosing three three-dimensional (3D) high-symmetry axes to use as scaffolding to build
the entire five-dimensional (5D) function. The axes chosen were the (100), (110), and the
(111) sets for their four-, two-, and three-fold rotational symmetries respectively.* Each
3D subset was built from an interpolation of their own one- and two-dimensional subsets.
The symmetric tilt and twist GBs for each set were fitted first because of their simplicity.
Only the rotation angle is needed to fully define the energies for these subsets, making them
one-dimensional (in Fig. la, the darker bands in the smaller circles). From the symmetric
tilt subset, the asymmetric, or general, tilt subset was interpolated. A second rotation angle
defining the rotation of the second grain makes this subset two-dimensional (the lighter,
wider band of color around the symmetric subset). A combination of the general tilt subset
(two dimensions) and the twist subset (one dimension) was used to interpolate the three-
dimensional subset for each high-symmetry axis (the three smaller circles). These three
three-dimensional subsets were then used to interpolate the GB 5D space.

Part of the development of this 5D function was accomplished through visual representa-
tions of the GB space. However, representing GBs is difficult because of their five degrees of
freedom. Different methods have been developed to represent them, each with their advan-

*For cubic crystals, rotations of 90°, 180°, or 120° about any (100), (110), or (111) axis respectively is
a symmetry operation. Thus, the (100) set is four-fold symmetric (360°/90° = 4), the (110) set is two-fold
symmetric (360°/180° = 2), and the (111) set is three-fold symmetric (360°/120° = 3).
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FIG. 1: Fig. 2 from Bulatov et al.! (a) demonstrates the theoretical relationship between
the high-symmetry subsets of the 5D GB space. Each multi-dimensional subset is interpo-
lated from smaller-dimensional subsets. (b) shows the Rodrigues space representation of the
fundamental zone of all GBs as built from three high-symmetry axes. The unit vectors along
the axes identify the boundary plane inclination. A parallel vector thus represents a twist
boundary, a perpendicular vector represents a tilt boundary, and a vector that is neither
parallel nor perpendicular represents a mixed boundary.

tages and disadvantages. One method is to use Rodrigues vectors to represent rotations in
Rodrigues space. This space utilizes concepts from an axis-angle representation, where the
axis of misorientation! specifies the point in space, and the angle! determines the magnitude
of the vector. In Rodrigues space, the magnitude of the vector is defined as tan(6/2). Thus,
a Rodrigues vector (R) is defined by an axis (a, where a has components a,, a,, and a,)
and an angle (0) by,5 2

R = a tan <Z> . (1)

This specifies only three of the five degrees of freedom. The other two are represented in
Fig. 1b by a unit vector at the point along the axis. A parallel vector represents a twist
boundary, and a perpendicular vector represents a tilt boundary. Anything else represents
a mix of twist and tilt (or a mixed boundary). One difficulty in using Rodrigues space
is that it is an infinite space, as it simply maps an axis and an angle onto a Cartesian
coordinate system.'®!® Every crystal has some sort of symmetry,'* and it is by taking
advantage of these crystal symmetries that the infinite space, and the 5D GB space can be

tThe misorientation of a grain describes how one grain is oriented with respect to another. A perfect
crystal has no misorientation. There are two main types of misorientation, twist and tilt, which indicate an
axis of misorientation perpendicular or parallel to the GB normal respectively. Twist boundaries are made
up of screw dislocations, and tilt boundaries are made up of edge dislocations.”

!The angle here specifies the amount by which the grain is rotated to get to its current orientation, and
is measured from a lab frame. The lab frame is an arbitrary frame from which the researcher makes the
measurement.



greatly simplified.">%81% This simplification comes in the form of a “fundamental zone”
where every GB is represented in a compact space that is conceptually easier to visualize.
The fundamental zone represents all GBs in that every point within the fundamental zone
is unique, and every point outside of the fundamental zone can be represented by a point
inside the fundamental zone.® '° Bulatov et al.! utilized this idea to create Fig. 1b, and also
as a basis for their interpolation function.

The fitting

Part of the difficulty that comes with creating an interpolation function for GB energy
is the lack of descriptive functions describing what happens at “high-angle boundaries.”?
At these GBs different dislocations® begin to overlap making it hard to a) distinguish the
individual contributions to the overall lattice imperfection, and b) determine a functional
form of the GB energies.®% Wolf!6 created a model that successfully predicted GB energies
for these high-angle boundaries. He built off of work done by Read and Shockley!” who
modeled GB energies at low-angle boundaries. Bulatov et al.! used the resultant Read-
Shockley-Wolf (RSW) model as the basis for their interpolation functions.

In 2015 Harbison® applied Bulatov et al.’s methods to UO,. He fit 158 GB energies,’
calculated by MD simulations, to Bulatov et al.’s interpolation function using a grid-search
algorithm. From this he obtained the 43 parameters necessary to calculate any arbitrary GB
energy. This work used the same GBs in Harbison’s work, but calculated their energies with
an 800 K anneal to obtain a better fit. By running the MD simulations with that anneal,
most of the GB energies were found to be lower and thus produced a more accurate fit for
the interpolation function.

The fitting procedure is generally the same for all nine data subsets. First, the parameters
relating to the setY are read in from previous fittings (in the case of no previous runs, the
copper parameters that were calculated by Bulatov et al.! are used). Important angles are
specified where low energies are expected, such as a X5 boundary for the (100) symmetric
tilt subset. These angles are calculated based on coincident site lattice (CSL) theory, which
states that the more lattice points that coincide, the lower the energy.®® Each energy in
the parameter-vector is listed as a scaled value based on the ergp parameter — this is a
parameter that represents the energy of an arbitrary, random GB, and can be seen as an
average of the GB energies. Thus, to make relevant comparisons, the energies are unscaled.
An initial step size is then set (various step sizes were needed for the different sets to avoid
numerical problems), and data for the specific subsets is read in from a database. The
misorientation angles and their associated energies are sorted in order from the smallest to
the largest angle, then all of the parameters and the angle-energy pairs are passed into a
grid-search fitting function.

Once the nine subsets are fitted, the mixing and weighting parameters that define the
relationship between the subsets are calculated in a similar manner to determine the full 5D
function. To test the function, results will be compared to simulation results for the (210)

$See footnote t

IBulatov et al.' identifies a set of functions for each subset. Each of these functions requires different
parameters which must be fit to data. These are then used to form a vector containing all of the parameters
for each subset which are used to fit to the entire 5D space.



set. Fitting results of the six one-dimensional subsets are provided in the following section.
For a list of the parameters calculated from the fitting procedure, see Table 1.

RESULTS AND DISCUSSION
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FIG. 2: The (100) twist (a) and tilt (b) results. In general the re-calculated energies are
lower, with significant differences around 40° to 50° in the tilt subset. The positive concavity
in the twist subset around 40° is unexpected, and may indicate the presence of a missing

cusp. There is a possible cusp around 30° in the twist subset, and around 68° in the tilt
subset.
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FIG. 3: The (110) twist (a) and tilt (b) results. Significant decreases in energy are found
for both subsets. Possible cusp locations are around 40° in the twist subset, and around 40°,
90°, and 140°in the tilt subset.

Figs. 2 to 4 show a comparison of this work’s results with results from Harbison® for the
one-dimensional subsets as outlined by Bulatov et al.! Initial MD calculations of the (100)
symmetric tilt GB energies using the 800 K anneal (Fig. 2b) showed a deep cusp around
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but some are also found to be higher. The positive concavity present in these results is
unexpected, and could indicate the presence of cusps. A possible location for the twist
subset is around 33°. Additional data is needed to determine possible cusp locations for the
tilt subset.

28° which was unexpected. An analysis of the MD simulation results for this misorientation
revealed that, in this case, the two crystals had re-aligned, changing the misorientation angle.
This realignment caused the GB energy to be much lower than expected. Comparison with
the simulation result used by Harbison revealed that his crystal structure did not realign.
While Harbison’s data was not calculated with the anneal and thus may not represent a
global minimum, we feel justified in using his results for the energy at 28° as it follows the
trend that the data around it sets.

Of the symmetric tilt GB energy sets, the (110) set has the most improvement. All three
sets showed a general decrease in the energy, giving us confidence that we have achieved a
better fit that more accurately describes GB energies in UO,. Each of these sets provides
more opportunity for research however. The (100) set needs more work done for data points
after around 50°. The scatter associated with those points seems to be higher, and the
possibility of a slight cusp presents itself around 68°. The (110) set as mentioned shows the
most improvement, but there are some low points in the second and third “humps” that do
not follow the trend, indicating further possibility for cusps. The first part of the function
(the first hump) needs additional data to determine the possibility of a cusp between 40°
and 50°. The fitted curve to the (111) set now has an upward trend that is unexpected. The
scatter associated with these data points is also relatively high, leading to the possibility of
a completely different set of functions to define this subset.

The twist GB energy sets vary in their success. The (100) set shows very little difference
between Harbison’s® work and this work. There is a slight positive concavity at the end of
the fitting for this subset, and this is unexpected, indicating the possibility of a cusp. This
cusp may occur around 30°. The (110) set has a definite decrease in the overall energies,
creating a plateau profile. An additional cusp around 40° is being considered. The (111) set
has the least improvement. From the work done by Bulatov et al.! this work expected to
see a plateau as demonstrated by Harbison’s® fitting. Instead, the fitting produced a curved



energy profile, indicating the potential for at least one cusp. A possible location of this cusp
is around 35°.

CONCLUSION

This work aimed to create a more accurate interpolation function for GB energies in UOs,.
Results in general showed a decrease in energy, which was expected. However, each energy
did not decrease the same amount, revealing additional characteristics of the energy profiles.
Future work will focus on quantifying those characteristics in an effort to more accurately
interpolate any arbitrary GB energy in UO,. Further analysis in this direction will likely
lead to a different set of functions, increasing the number of parameters necessary to define
the 5D GB energy space for UO,. Additional efforts can be directed towards analyzing the
GB energy profiles of other fluorite-crystal-structured materials to determine a general or
universal interpolation function for that crystallographic class.
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Table 1: This table gives the parameters for UO, that generate the energy function.

Array number Parameter name Parameter value
1 Energy Scaling Factor (ercp) 1.615789 J/m?
2 (100) Max Distance 0.405
3 (110) Max Distance 0.739
4 (111) Max Distance 0.352
5 (100) Weight 16.2
6 (110) Weight 1.65
7 (111) Weight 0.08
8 (100) Tilt/Twist Mix Power Law (1) 0.03325
9 (100) Tilt/Twist Mix Power Law (2) 0.00053

10 Maximum (100) Twist Energy 0.60903
11 (100) Twist Shape Factor 1.44857
12 (100) Asymmetric Tilt Interpolation Power 35.6

13 (100) Symmetric Tilt First Peak Energy 1.00578
14 (100) Symmetric Tilt First 35 Energy 0.84456
15 (100) Symmetric Tilt Second Peak Energy 0.97259
16 (100) Symmetric Tilt Second ¥5 Energy 0.9379
17 (100) Symmetric Tilt 317 Energy 0.96881
18 (100) Symmetric Tilt First Peak Angle 0.31569
19 (100) Symmetric Tilt Second Peak Angle 0.88538
20 (110) Tilt/Twist Mix Power Law (1) 1.05731
21 (110) Tilt/Twist Mix Power Law (2) 1.57844
22 (110) Twist Peak Angle 0.46145
23 (110) Twist Peak Energy 1.14442
24 (110) Twist 33 Energy 1.09306
25 (110) Twist 90° Energy 1.12621
26 (110) Asymmetric Tilt Shape Factor 3.18431
27 (110) Symmetric Tilt Third Peak Energy 1.05139
28 (110) Symmetric Tilt X3 Energy 0.61703
29 (110) Symmetric Tilt Second Peak Energy 1.09024
30 (110) Symmetric Tilt ¥11 Energy 0.56686
31 (110) Symmetric Tilt First Peak Energy 1.10238
32 (110) Symmetric Tilt Third Peak Angle 0.88736
33 (110) Symmetric Tilt Second Peak Angle 1.87115
34 (110) Symmetric Tilt First Peak Angle 2.73099
35 (111) Tilt-Twist Linear Interpolation 5.90062
36 (111) Twist Shape Factor 1.78856
37 (111) Twist Peak Angle 0.5398
38 (111) Twist Peak Energy 0.75736
39 (111) Symmetric Tilt Peak Angle 0.25966
40 (111) Symmetric Tilt Max Energy 1.02884

Continued on next page.
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Table 1 — Continued from previous page

Array number

Parameter name

Parameter value

41 (111) Symmetric Tilt X3 Energy 1.13114
42 (111) Asymmetric Tilt Symmetry Point Energy 3.18623
43 (111) Asymmetric Tilt Scale Factor 0.0706
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